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The adverse effect of parallel magnetic and electric fields perpendicular to horizontal electrodes facing 
upwards in combined natural and forced convection was studied experimentally. The results are inter- 
preted in terms of convective-diffusion models modified for the magnetic field interaction. 
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magnetic flux density vector 
magnitude of its vertically imposed value 
concentration of the electrolyte 
electrolyte diffusion coefficient 
anode-cathode separation distance 
equivalent channel diameter 
Faraday's constant 
cathode current density 
current density vector 
electrode length 
molar mass of electrolyte 
interaction parameter 
pressure drop 
Rayleigh number 
Reynolds number (characteristic length: 
do) 
Schmidt number 
Sherwood number 
velocity 
co-ordinate along reactor length 
co-ordinate perpendicular to electrode 
surfaces 
valency 
densification coefficient 
shape factor 
magnetic interaction parameter 
dimensionless electrolyte concentration 
characteristic length 
kinematic viscosity 
density 
electric conductance 
residence time 

FC related to forced convection 
NC related to natural convection 
L related to electrode length 
x, y related to the x andy co-ordinates 
oo related to fully developed (bulk) conditions 

Supe~cHpt 

0 related to the absence of the magnetic field 

1. I n t r o d u c t i o n  

The enhancing effect of magnetic fields, imposed 
upon d.c. electric fields, on electrolytic mass 
transport rates has been amply documented in 
the recent literature. Under otherwise identical 
conditions, an order-of-magnitude increase in 
current flow can be achieved in carefully designed 
magneto-electrolytic cells when the electric and 
magnetic fields are mutually perpendicular. Such 
enhancements have been interpreted, by means of 
magnetohydrodynamic models, and in terms of 
local vorticity generation in the neighbourhood of 
the electrodes. Equations for the prediction of 
mass transport enhancement have been developed 
for configurations where the analytical treatment 
of convective diffusion in boundary layers is not 
unduly complicated [1,2]. 

It is well known in the classical theory of 
magnetohydrodynamics [3] that magnetic field 
superposition can suppress vorticity generation in 
certain configurations (the principle of an MHD 
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nozzle, for instance, is based on this phenomenon). 
It may, therefore, be expected that under specific 
conditions the magnetic field can retard mass 
transport rates, generated in an electric field, by 
reducing ionic concentration gradients in the 
neighbourhood of  the electrodes. On th.e basis of 
heat transport experiments conducted on horizon- 
tal mercury pools heated from below [4--7], such 
retardation effects on mass transport at horizontal ~ 
cathodes facing upwards, appear to be predictable 
by a logical application of similarity principles. 
For instance, using Chandrasekhar's theory of 
hydromagnetic stability [8], the retarding effect 
of the imposed magnetic field on the onset of 
hydrodynamic instability (i.e., the magnitude of 
the critical current density) in the cell can thus 
be estimated, provided that natural convection is 
the predominant mode of mass transfer. In the 
case of laminar forced-flow past a flat plate 
electrode, the distortion of velocity profiles may 
be estimated by applying the similarity principle 
to the analytical approach of Rossow [9] for heat 
transfer. In the above-quoted studies the common 
denominator is the collinear nature of the electric 
and magnetic fields; coUinearity is responsible for 
the impeding effect on motion and, hence, trans- 
port rates (see Section 3). 

In a practical magneto-electrolytic cell, 

natural and forced convection often co-exist and 
both contribute to the composite transport 
process; a numerical means of estimating such 
contributory effects has been proposed via the 
phenomenological concept of an interaction 
parameter [10, 12]. It is, of  course, impossible 
to deduce from the numerical value of such a 
parameter the individual retardation effects 
exercised by the magnetic field on the natural- 
convective and forced-convective components. 
In order to gain insight into the individual retar- 
dation phenomena experimentally observed, 
decreases in mass transport rates have to be 
compared to decreases predicted via natural- 
convection and forced-convection models 

,appropriately modified for the presence of collinear 
electric-magnetic fields. 

The purpose of this paper is to present the 
results of such a study and to demonstrate how 
electrolytic mass transport rates can be reduced 
in magnetic fields. The phenomenon may find 
future application in selective co-deposition of 
metals on cathode surfaces and in related areas. 

"2. Experimental 

The apparatus is sketched in Fig. 1. The electro- 
lytic cell is a short section (6 cm long) of a long 

,11 

2 

I 

4 ~T7~?-- ~ 
,r--" I 3 A A  

3 , /  
4 v / / / / i  

AA , ; 9  
~ ,.  / / / /  e , ) 

..._1 

51 
C 

Fig. 1. Sketch of the experimental apparatus and electrode insertion (Section AA). 1 plastic cell wall; 2 parallel straws; 
3 electrodes; 4 magnetic pole faces; 5 electrolyte holding tank; 6 circulating pump; 7 bypass line; 8 flowmeter; 
9 electrode connection. 
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rectangular channel (total length: 247.5 cm), 
2 cm wide and 4 cm deep; the associated hydro- 
dynamic entry length required for the establish- 
ment of  fully developed flow, is about 200 cm. 
The electrodes are 6.35 mm thick pure copper 
plates o f  dimensions 2 cm x 6 cm, sel flush to the 
inner upper and lower channel surfaces, as shown 
in Section AA; they are easily removable for 
cleaning and pre-treatment. A tightly packed 
bundle of  6 cm long, 2.5 mm diameter plastic 
'straws' was inserted at a 5 cm distance down- 
stream from the channel entrance to accelerate 
flow-line stratification and the establishment of  
laminar flow conditions. The electrolyte, a mixture 
of  aqueous solutions of  0.I 06 tool dm -a CuSO4 
and 3.184 mol dm -3 H2SO4, was circulated 
between the channel, an 8 dm a reservoir and the 
rotameter-bypass assembly by means o f  a small 
plastic pump. The electrolytic cell section was 
placed between the pole faces o f  a 5 kV A Walker 
regulated d.c. electromagnet described in earlier 
communications [ 13]. D.c. electrolysis was carried 
out via a regulated HP standard bench-scale power 
supply (maximum rating o f  4 A); the current-  
voltage variation was continuously monitored via 
an X - Y  recorder and limiting currents were 
measured by a digital voltmeter/ammeter device. 
The electrode surfaces were carefully prepared 
before each run by sanding (120 grade and 240 
grade sandpaper), degreasing with acetone and 
methanol, and drying. The potential difference 
across the cell was raised via a variable rheostat 

at the rate of  5 mV s -1 until the limiting current 
plateau was reached (usually at 0.7 V). 

Table 1 contains a summary of  experimental 
observations. 

The limiting currents observed in the residual 
magnetic field are slightly higher in the second set 
(with the exception of  the 385 cm 3 min -1 entry 
where the large deviation is unexplained), but 
within the usually expected experimental scatter. 
Tile electrolytic properties were estimated from 
standard handbook data, but the value of  the 
diffusion coefficient was computed according to 
the procedure o f  Fenech and Tobias [14] which 
was judged to be more reliable at the employed 
H2SO 4 concentration than the much earlier data 
of  Cole and Gordon [15]. The flow rates were 
carefully selected to be within the laminar flow 
regime; very low flow rates were avoided for 
reasons o f  convenient flow control. 

3. Theory 

3.1. Ana ly s i s  in the  absence  o f  a magne t i c  f i e M  

As mentioned before, the combined effect of  
natural and forced convection may conveniently 
be analyzed in terms of  the interaction parameter, 
defined [10, 11] as 

1/n 
(Sh ) / (Sh )N  c = {1 + [ ( S h ) r c / ( S h ) N c ]  n} 

(1) 
Equation 1 is written in terms of  Sherwood num- 

Table 1. Summary o f  the experimental results [23]. (Estimated electrolyte properties: v = 0.015 21 cm 2 s-l;  o = 
0 .761Scm- l ;  D =3.786 • cm 2 s -1 at T = 20 ~ C} 

Volumetric f low Residence 
rate, Q, time, "r 
(era 3 rain -1) (s) 

Limiting current flow, Ii~ (mA) 

B = 4 r n T *  B = 3 7 4  B = 6 8 5  g e t  

355 8.108 81 - 73 129.73 
370 7.782 84 - 75 135.17 
525 5.484 87 - 78 191.80 
660 4.364 92 - 78 241.10 
720 4.000 93 - 81 262.98 
800 3.599 93 - 83 292.30 
385 7.481 103 97 85 140.61 
430 6.696 103 91 72 157.09 
600 4.800 101 92 88 219.15 
720 4.000 102 93 89 262.98 

* residual flux density. 
~" characteristic length: equivalent diameter of channel 
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bers, rather than current densities, pertaining to 
limiting (mass transport-control) conditions. The 
excess electrolyte effect on the Grashof number 
was considered via the procedure proposed by 
Newman and Selman [16], using their bisulphate 
model. The corresponding Sherwood numbers 
were computed via the relationships proposed by 
Goldstein [17] as 652.7; by Quraishi [18] as 
486.71 ;by Lloyd and Moran [19] as 537.60; the 
characteristic length here is the length of the 
electrode. Since the first figure seems to be excess- 
ively high, the average of the remaining two, 
512.15, was taken as the contribution of natural 
convection. 

The contribution of forced convection was 
�9 computed via the relationship of Pickett and 
Stanmore [20], expressed in terms of the charac- 
teristic electrode length 

i 2 \l/3i- L ]  'i3 
(Sh)Fc = 1.467 tl-'-~-~ ) [ (Re)L(Sc)~j  ' . 

(2) 
The experimental Sherwood numbers were com- 
puted as 

iLL (3) 
(Sh) - zFDc= 

since the transference number of copper ions is 
vanishingly small in the experimental system. 
Using Equation 1 and the 'template' plot shown 
in previous publications [10, 11 ], the interaction 
parameter is found to vary between 1/3 and 
unity, with a strong tendency to be between 
n = 2/3 and unity. It appears, therefore, that 
under experimental conditions natural convection 
is stronger than forced convection, the latter 
exhibiting, however, a significant contribution. 

3.2. The effect o f  the imposed magnetic field 
on mass transport 

The effect on the natural convection component 
will first be treated. Recalling that Chandrasekhar's 
theory [8] permits the estimation of retardation 
of the onset of flow instability in magnetic fields, 
the critical current density (see Appendix A) is 
computed to be 65.2 pAm -s (/7 = 374mT) and 
80.2 pAm -s (B = 685 naT); hence, at the experi- 
mental current flows the magnetic retardation 
effect is completely negligible. A similar finding 

follows from computing the effect of the magnetic 
field on the initial slope of the derivative of the 
universal function,/7~ (0), which determines the 
numerical value of the Sherwood number in the 
model of Rotem and Claassen [21]. As shown in 
Appendix A, the effect of the magnetic field is 
entirely negligible. One may conclude that the 
employed magnetic field strengths exert no 
sensible retardation effect on mass transport due 
to natural convection. 

The effect on the forced-flow component is 
completely different. As shown in Appendix B, 
the magnetic field effect manifests itself by the 
quantity 

r = k i - - k s - - r  (4) 
P 

indicating the quadratic effect of the magnetic 
field strength; the numerical values k, = 1.33 and 
ks = 3.329 pertain to the modified Rossow- 
model. Then, in the instance of flow between 
parallel plates, 

= 0.6783~m (Re)r~ (Sc) (5) (Sh)L ,i3 . s  ,/3 

and for flow past flat plates, 

(Sh)L = 0.6183O~3(Re)~n(Sc) m (6) 

express the magnetic field effect on the dimension- 
less electrolytic mass transport rate. Equations 5 
and 6 clearly indicate that as the magnetic flux 
density is increased, r and hence (Sh)L become 
smaller; the numerical effect can be quite appreci- 
able, as illustrated in Fig. 2 where experimentally 
observed relative mass transport rates are plotted 
against relative rates predicted by Equations 5 and 
6. The slope of the least squares regression line, 
1.009 88, is only slightly different from the 
diagonal slope of unity; since the computed 
likelihood ratio [22], 1.3, is much less than ten, 
it follows that the diagonal line is statistically 
indistinguishable from the least squares line and, 
as such, it can be accepted as a 'best' linear rep- 
resentation, with a standard error of estimate 
(root-mean square of the experimental deviations 
about the model) of 0.0692, although linear 
representation is not necessarily the most accurate. 
These results indicate that (a) the magnetic field 
retards forced flow, and (b) the retardation effect 
can be interpreted with reasonable confidence in 
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Fig. 2. Plot of the experimentally 
observed relative mass transport rates 
versus theoretically computed relative 
rates (for physical reasons the regression 
line passes through the 0,0 point). 

terms of a flow-past-fiat-plate model, appropriately 
modified for the presence of  a magnetic field, 
which is transverse to the fully developed flow 
regime, but collinear with the electric field. 

It is instructive to note that collinear electric 
and magnetic fields do not generate or suppress 
hydrodynamic flows in a continuum where the 
electric current flow and the magnetic flux are 
strictly uniform. This can be seen from Kelvin's 
theorem where the curl (i x B/p) becomes the null 
vector at such conditions. Thus, the magnetic field 
effect in the electrolyte bulk is most likely 
negligible and its influence is confined to the 
boundary layer existing at the electrode surfaces. 

4. Concluding remarks 

Magneto-electrolysis in collinear electric-magnetic 
fields, characterized by retardation of mass trans- 
port, is a counter-example to magneto-electrolysis 
with mass transport enhancement; the magnetic 
retardation effect is essentially confined to the 
forced-flow component. It may have practical 
usefulness in the simultaneous electrolysis of two 
or more ionic species, especially in separate liquid 
phases. This aspect will require further research 
and is beyond the scope of the current paper. 

Appendix A 

The magnetic fieM effect on the natural con- 
vective component 

The estimation of  the onset of  flow instability 
via Chandrasekhar's theory. In his classical treatise 
[8], Chandrasekhar shows that the critical thermal 
RayMgh number, associated with the onset of 
flow instability (i.e., convection), is a mono- 
tonically increasing function of the dimensionless 
parameter: 

~d2B 2 
Q - (A1) 

pv 

Thus, the retarding effect of the magnetic field 
on natural convection at horizontal flat plates 
facing upward is essentially quadratic, unless the 
magnetic field strength is very large. If Q is known, 
(Ra)cm may conveniently be obtained from 
graphs in Chandrasekhar's text. 

Assuming 1 : 1 similarity between heat and mass 
transport, the critical current density may be 
estimated from (Ra)e~it by replacing the thermal 
expansion coefficient with the conventional 
densification coefficient, and the thermal diffusion 
coefficient with the electrolyte diffusion coef- 



486 T.Z. FAHIDY AND T. S. RUTHERFORD 

ficient. In so doing, and under the conditions of 
the experimental work, Q = 67.316B 2 ; then, from 
Fig. 39, p. 171 in [8], one obtains (Ra)ern = 
1905.5 for B = 374 mT and (Ra)e~it = 2344.2 
for B = 685 mT. The critical current densities 
are computed from the relationship 

�9 z F D 2 v ( ~ ) ( R a ) ~ t .  (A2) 
l e f i t -  gada 

Since, for the given electrolyte, a = 0.0123, M = 
159.61 andz = 2, 

ieat = 3.4205 • 10-t4(Ra)erit (Am -2) 

whence/eat = 65.18 pA m -2 (B = 374 roT) and 
80.18 pAm- :  (B = 685 mT). 

The estimation o f  the magnetic fieM effect via the 
modified approach o f  Rotem and Claassen [21, 25]. 
In collinear electric and magnetic fields, the con- 
vective diffusion model [24] for a horizontal 
cathode facing upward, may be written as 

~Vx + ~Vx l ~p ovxB2o 
vx ~x v~ by - p bx p 

[~2v~ ~2v:~ 1 
+ u 1--~x 2 + 3y2 ] (A3) 

av~ av~ _ _ 1_ 
r - 

(A4) 

OVx + 0v---r = 0 (A6) 
bx ~y 

Vx = vy = 0, 0 = l a t y  = 0 

Vx = vy = 0 = 0 a s y - + ~ 1 7 6  (A7) 

The magnetic field effect is manifest by the second 
term on the right-hand side of Equation A3. 
Following the procedure of Rotem and Claassen 
the dimensionless mass transport rate may be 
computed as 

(Sh) = ~ [--/-7rl (0)] (Ra) 1/s (AS) 

in the laminar flow regime. The numerical value of 
the derivative of  the universal function/71 tias 

been computed as - 0.4601, in the absence of a 
magnetic field; the associated calculation involves 
a complicated trial-and-error solution of three 
differential equations written in terms of the 
universal functions obtained via undimen- 
sionalization and similarity transformation. In 
the presence of the magnetic field, this set may be 
written as 

5ff;' ' ~/FT'a ~- 2[G, - - '  ~7~G', ] " 

g~-~ '~  ~- o 

( i9 )  

(A10) 

+ ~;F1H1 ~ 0 ( h i  1) 

= 0; /~1 = G'I = l atffl  = 0 

= G1 = 0 a s f f l - + ~  (A12) 

F,  = P'I 

The magnetic field effect is represented by the 
parameter 

5 oX2B~ 
q - 9 pv(Ra) 2Is (Ai3) 

In the experimental system, ~ = 0 [10 -3 ] at most 
and, in consequence, the damping effect of the 
9/7'1 term on Equation A9 is extremely small. 
The numerical solution of Equations A9-A12 
shows that/7't (0) is essentially -- 0.460, as in the 
q = 0 case. 

Appendix B 

The magnetic field effect on the forced-flow 
component 

The analysis is a modification for collinear electric- 
magnetic fields of the approach by Rossow [9], 
shown also by Bopp [26], combined with the 
appropriate convective-diffusion model [27] of 
forced flow past a flat plate. The hydrodynamic 
regime is described by the equation system 

vx Ox v~ by ~ V x  = u ~  (a14)  

Vx = vy = 0 at y = 0 (A15) 

bVx aVx oB~ asy ~ 
v~+v:;v~+o;ff~ v = 0; b x -  T 

(A16) 

The solution of Equations A14-A16 yields the 
velocity field in the associated boundary layer. 
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Following Rossow's analysis, the velocity com- 
ponents may be written as 

v.~ 1 ~m r/2 
Vx ~--" T ~m~ and vy ~-- -~ (vo~l)/x) 1/2 ~ .  

(A17) 

where the similarity variable is defined as 
~7 = ~(voolvx)lny. 

Assuming that Equation A17 applies to the 
concentration boundary layer, the convective 
diffusion equation may be solved in the same 
manner as shown by Levich [27] in the absence 
of  the magnetic field, as 

(Sh) = 0.618 34 x'l/arr'~l/2rc~l/3wm t~,~)I~ ~.o~., (A18) 

Cm comprises the magnetic field effect; for small 
magnetic field strength, Rossow's results may be 
summarized as 

~m 1.33 3.3291 oB~ = -- - -  r (A19) 
P 

upon a proper regression analysis of  his numerical 
data; the standard error of  estimate for Equation 
A19 is 0.0026. 

In the instance of  laminar flow past parallel 
plates, the model by Pickett and Stanmore [20] 
has been modified by replacing their original 
velocity profile,/3, with Rossow's; hence, 

f~m v3/2 
/3 = ~ (vx)ln (A20) 

is taken for further development. It then follows 
that if the classical Leveque approximation to the 
mass transfer coefficient is accepted, the local 
Sherwood number may be written as 

( /3 
(Sh)x = 1.12de 9 ~ x ]  (A21) 

where/3 is given by Equation A20. By substitution 
and appropriate rearrangement Equation A21 may 
be expressed as 

(Sh)x = 0.339 14 Camn(Re)ln(Sc)l/3 (d~/x) 1/2 

(A22) 

The value o f  (Sh), averaged over the electrode 
length, is obtained upon integration as 

(Sh) = 0.6783 (~lm/3(Re)U2(Sc)l/3 (delL) 1/2 

(A23) 

Rewriting in terms of  the characteristic electrode 
length, 

(Sh)L = 0.6783 r a/3 (A24) 

which is Equation 5. In the absence of  the mag- 
netic field and in view of  the experimental con- 
ditions [7 = 2.0; (Sc) = 4045.05; de = 2.67 cm 
and L = 6 cm], 

(Sh)L = l l .885(Re)If  z (A25) 

whereas the modified form of  the Pickett- 
Stanmore equation (Equation 7, [20]) 

(Sh)L 

yields 

(_2_2] 1'3 
= 1.467 \ 1 + 7] [(Re)L(Sc)(L/de)] 1/3 

(A26) 

(Sh)L = 26.757 (Re)L/3 (A27) 

The discrepancy between Equations A25 and A27 
is not larger than about 20% on an average, in the '  
experimental (Re) range. Note that the forcing 
of  the Rossow-profile on the Leveque approxi- 
mation leads to a square-root dependence of  (Sh)L 
on (Re)r~ (in contrast with the cube-root depen- 
dence manifest in the Pickett-Stanmore analysis) 
because of  the assumption that the separation 
distance between the two electrodes is large 
enough to ignore the effect of  the anode on the 
hydrodynamic behaviour at the cathode. 
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